Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The intervertebral disc is a complex structure that experiences multiaxial stresses regularly. Disc failure through herniation is a common cause of lower back pain, which causes reduced mobility and debilitating pain, resulting in heavy socioeconomic burdens. Unfortunately, herniation etiology is not well understood, partially due to challenges in replicating herniation in vitro. Previous studies suggest that flexion elevated risks of herniation. Thus, the objective of this study was to use a multiscale and multiphasic finite element model to evaluate the risk of failure under torque- or muscle-driven flexion. Models were developed to represent torque-driven flexion with the instantaneous center of rotation (ICR) located on the disc, and the more physiologically representative muscle-driven flexion with the ICR located anterior of the disc. Model predictions highlighted disparate disc mechanics regarding bulk deformation, stress-bearing mechanisms, and intradiscal stress–strain distributions. Specifically, failure was predicted to initiate at the bone-disc boundary under torque-driven flexion, which may explain why endplate junction failure, instead of herniation, has been the more common failure mode observed in vitro. By contrast, failure was predicted to initiate in the posterolateral annulus fibrosus under muscle-driven flexion, resulting in consistent herniation. Our findings also suggested that muscle-driven flexion combined with axial compression could be sufficient for provoking herniation in vitro and in silico. In conclusion, this study provided a computational framework for designing in vitro testing protocols that can advance the assessment of disc failure behavior and the performance of engineered disc implants.more » « less
-
A comprehensive understanding of multiscale and multiphasic intervertebral disc mechanics is crucial for designing advanced tissue engineered structures aiming to recapitulate native tissue behavior. The bovine caudal disc is a commonly used human disc analog due to its availability, large disc height and area, and similarities in biochemical and mechanical properties to the human disc. Because of challenges in directly measuring subtissue-level mechanics, such as in situ fiber mechanics, finite element models have been widely employed in spinal biomechanics research. However, many previous models use homogenization theory and describe each model element as a homogenized combination of fibers and the extrafibrillar matrix while ignoring the role of water content or osmotic behavior. Thus, these models are limited in their ability in investigating subtissue-level mechanics and stress-bearing mechanisms through fluid pressure. The objective of this study was to develop and validate a structure-based bovine caudal disc model, and to evaluate multiscale and multiphasic intervertebral disc mechanics under different loading conditions and with degeneration. The structure-based model was developed based on native disc structure, where fibers and matrix in the annulus fibrosus were described as distinct materials occupying separate volumes. Model parameters were directly obtained from experimental studies without calibration. Under the multiscale validation framework, the model was validated across the joint-, tissue-, and subtissue-levels. Our model accurately predicted multiscale disc responses for 15 of 16 cases, emphasizing the accuracy of the model, as well as the effectiveness and robustness of the multiscale structure-based modeling-validation framework. The model also demonstrated the rim as a weak link for disc failure, highlighting the importance of keeping the cartilage endplate intact when evaluating disc failure mechanisms in vitro . Importantly, results from this study elucidated important fluid-based load-bearing mechanisms and fiber-matrix interactions that are important for understanding disease progression and regeneration in intervertebral discs. In conclusion, the methods presented in this study can be used in conjunction with experimental work to simultaneously investigate disc joint-, tissue-, and subtissue-level mechanics with degeneration, disease, and injury.more » « less
-
null (Ed.)A comprehensive understanding of biological tissue mechanics is crucial for designing engineered tissues that aim to recapitulate native tissue behavior. Tensile mechanics of many fiber-reinforced tissues have been shown to depend on specimen geometry, which makes it challenging to compare data between studies. In this study, a validated multiscale, structure-based finite element model was used to evaluate the effect of specimen geometry on multiscale annulus fibrosus tensile mechanics through a fiber engagement analysis. The relationships between specimen geometry and modulus, Poisson’s ratio, tissue stress–strain distributions, and fiber reorientation behaviors were investigated at both tissue and sub-tissue levels. It was observed that annulus fibrosus tissue level tensile properties and stress transmission mechanisms were dependent on specimen geometry. The model also demonstrated that the contribution of fiber–matrix interactions to tissue mechanical response was specimen size- and orientation- dependent. The results of this study reinforce the benefits of structure-based finite element modeling in studies investigating multiscale tissue mechanics. This approach also provides guidelines for developing optimal combined computational-experimental study designs for investigating fiber-reinforced biological tissue mechanics. Additionally, findings from this study help explain the geometry dependence of annulus fibrosus tensile mechanics previously reported in the literature, providing a more fundamental and comprehensive understanding of tissue mechanical behavior. In conclusion, the methods presented here can be used in conjunction with experimental tissue level data to simultaneously investigate tissue and sub-tissue scale mechanics, which is important as the field of soft tissue biomechanics advances toward studies that focus on diminishing length scales.more » « less
-
Abstract Intervertebral disc research has sought to develop a deeper understanding of spine biomechanics, the complex relationship between disc health and back pain, and the mechanisms of spinal injury and repair. To do so, many researchers have focused on characterizing tissue-level properties of the disc, where the roles of tissue subcomponents can be more systematically investigated. Unfortunately, experimental challenges often limit the ability to measure important disc tissue- and subtissue-level behaviors, including fiber–matrix interactions, transient nutrient and electrolyte transport, and damage propagation. Numerous theoretical and numerical modeling frameworks have been introduced to explain, complement, guide, and optimize experimental research efforts. The synergy of experimental and computational work has significantly advanced the field, and these two aspects have continued to develop independently and jointly. Meanwhile, the relationship between experimental and computational work has become increasingly complex and interdependent. This has made it difficult to interpret and compare results between experimental and computational studies, as well as between solely computational studies. This paper seeks to explore issues of model translatability, robustness, and efficient study design, and to propose and motivate potential future directions for experimental, computational, and combined tissue-level investigations of the intervertebral disc.more » « less
-
Abstract Bovine caudal discs have been widely used in spine research due to their increased availability, large size, and mechanical and biochemical properties that are comparable to healthy human discs. However, despite their extensive use, the radial variations in bovine disc composition have not yet been rigorously quantified with high spatial resolution. Previous studies were limited to qualitative analyses or provided limited spatial resolution in biochemical properties. Thus, the main objective of this study was to provide quantitative measurements of biochemical composition with higher spatial resolution than previous studies that employed traditional biochemical techniques. Specifically, traditional biochemical analyses were used to measure water, sulfated glycosaminoglycan, collagen, and DNA contents. Gravimetric water content was compared to data obtained through Raman spectroscopy and differential scanning calorimetry. Additionally, spatial distribution of lipids in the disc's collagen network was visualized and quantified, for the first time, using multi‐modal second harmonic generation (SHG) and Coherent anti‐Stokes Raman (CARS) microscopy. Some heterogeneity was observed in the nucleus pulposus, where the water content and water‐to‐protein ratio of the inner nucleus were greater than the outer nucleus. In contrast, the bovine annulus fibrosus exhibited a more heterogeneous distribution of biochemical properties. Comparable results between orthohydroxyproline assay and SHG imaging highlight the potential benefit of using SHG microscopy as a less destructive method for measuring collagen content, particularly when relative changes are of interest. CARS images showed that lipid deposits were distributed equally throughout the disc and appeared either as individual droplets or as clusters of small droplets. In conclusion, this study provided a more comprehensive assessment of spatial variations in biochemical composition of the bovine caudal disc.more » « less
An official website of the United States government

Full Text Available